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ABSTRACT 
 
 
 
Speech-recognition technology is beginning to be used in automobiles, 

telephones, personal digital assistants (PDAs), medical records, e-commerce, text 

dictation and editing. Speech recognition can also be integrated into Virtual 

Environments (VEs) to create responsive virtual entities. Like the mouse, keyboard, and 

the trackball, Speech-recognition technology can enhance the control of a computer and 

improve communication. 

Dramatically expanding interest in the Internet and VEs has been gated by limited 

interactivity with human-avatar models. As more users begin interacting with avatars in 

VEs, designers are prompted to create more realistic, humanlike avatars. This quest for 

realism needs to go beyond visual aspects to include speech-recognition technology, 

which can greatly augment the realism of these avatars. 

This thesis presents design and development of a Voice User Interface (VUI), 

which maps to a set of behavioral motions for humanoid avatars using Extensible 3D 

(X3D) graphics, the Virtual Reality Modeling Language (VRML), Humanoid Animation 

(H-Anim) Standard and Java Speech API. The VUI includes a suitable speech-

recognition component for application-command vocabularies. This thesis also 

demonstrates interchangeability of both avatars and animation behaviors, and creates 

networked humanoid animation driven by a human voice. 
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I. INTRODUCTION 

The arrow which was shot,  

The word which was spoken and  

The life which passed never return. 

- A Turkish Proverb 

 

Two roads diverged in a yellow wood, 

And sorry I could not travel both 

And be one traveler, long I stood 

And looked down one as far as I could 

To where it bent in the undergrowth; 

Then took the other, as just as fair, 

And having perhaps the better claim, 

Because it was grassy and wanted wear; 

Though as for that the passing there 

Had worn them really about the same, 

And both that morning equally lay 

In leaves no step had trodden black. 

Oh, I kept the first for another day! 

Yet knowing how way leads on to way, 

I doubted if I should ever come back. 

I shall be telling this with a sigh 

Somewhere ages and ages hence: 

Two roads diverged in a wood, and I— 

I took the one less traveled by, 

And that has made all the difference. 

“The Road Not Taken” by Robert Frost (1920) 
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A. VOICE-INTERFACES BACKGROUND 

In 1986, Dr. Jacob Nielsen asked a group of 57 IT professionals to predict what 

would be the greatest changes in user interfaces by the year 2000. The top-five answers 

were 

 

Speech  I/O  33% 

Individualized interaction   19% 

Increased use of graphics, mice, icons, etc.    16% 

Dialogues developed by the users themselves   12% 

Other new I/O-media than speech 12% 

 
Table 1.1   User Interfaces Prediction Table [From Nielsen 99] 

 

While Graphical User Interfaces (GUIs) have clearly been the winner since that 

time, Voice User Interfaces (VUIs) certainly failed to reach the demand that IT 

professionals expected. The key issue in interaction design and the main determinant of 

usability is what the user “says” to the interface. Whether he or she provides the 

command by speaking or by typing matters little to the user. Thus, having voice 

interfaces will not necessarily free us from the most substantial part of user interface 

design: determining the structure of the dialogue, what commands or features are 

available, how the users are to specify what they want, and how the computer is to 

communicate the feedback.  

Voice interfaces have their greatest potential in the following cases: 

• Users with various physical disabilities that prevent them from using a 

mouse or keyboard. Such users are not able to drive an avatar in a Virtual 

World. 
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• All users, with or without disabilities, whose hands and eyes are occupied 

with other tasks. For example, while driving a car or while repairing a 

complex piece of equipment.  

• Users who do not have access to a keyboard and/or a monitor. For 

instance, users accessing a system through a payphone. 

 

B. MOTIVATION 
This thesis provides a step in a different direction to support virtual worlds by 

offering another user-control option other than mouse, keyboard, and trackball. Five 

examples of possible uses of VUIs are examined: SALT Reports, entertainment, virtual 

environments, e-commerce and gun control. Specific details regarding these uses follow: 

 

1. Exemplar: Situation Reports Using Voice Recognition 
The U.S. Army is exploring the use of speech-recognition software, which is seen 

increasingly in the commercial sector, as a potentially useful tool in future combat 

systems. The Army plans to integrate tactical voice activation into Version Four of Force 

XXI Battle Command, Brigade and Below software (FBCB2). FBCB2 is a digital 

command and control system, mounted on tactical vehicles and other platforms to 

provide battle command and situational awareness information to the war fighter, from 

brigade level down to the soldier platform level. FBCB2 is the central system of the 

future Army Battle Command Systems, a collection of systems that provides the 

capability to the war fighter collectively known as "network-centric warfare." [Seffers 

2001] 

The operational requirements for tactical voice activation in FBCB2 call for a 

voice-activated means to perform key operations. This would include situation and SALT 

(Size, Activity, Location, Time) reports, in which soldiers report the size, activity, 

location and time of enemy forces spotted on the battlefield. For example, the soldier 

spotting an enemy armored personnel carrier might tell the computer: “SALT report.” 

The computer prepares to receive information, and the soldier might say “Enemy 

equipment type: APC. Quantity: Six. Enemy Activity: Attacking.” [Seffers 2001]. The 
3 



computer converts such information into a format for transmission via pre-established or 

directed distribution list that might include the unit commander, intelligence officers and 

artillery forces.   

 

2. Entertainment 

VUIs may be integrated into video games to control the present entities. Imagine a 

tactical war game in which the troops can be directed by saying, “Go to the end of the 

street!” or “Open fire!” Imagine a game that you could give tactical orders to the 

commanders of your military forces with your own voice. Using natural language 

processing (NLP), the virtual commanders might understand your commands and carry 

out the missions. Examples in this area can be expanded easily. 

 

3. Virtual Environments (VEs) 
VUIs  are an appealing alternative while interacting  with Virtual Environments 

(VEs).  For example, intelligent avatars might replace actual bridge personnel in a 

warship bridge simulation. These avatars might understand voice commands, fulfill them 

and report via their own speech-recognition capabilities. Such an approach contributes to 

the simulation in two ways. The first is that the simulation environment becomes more 

realistic. The second is that the simulation becomes trainee independent. In other words, 

no bridge personnel are needed to run the simulation. Additionally, inserting intelligent 

avatars to the VEs can provide a range of possibility from non-person-collaborative 

simulation to many-person-collaborative simulation. 

 

4. E-Commerce 

E-Commerce is growing rapidly on the Internet, and speech-recognition 

technology can be integrated into advertising. An avatar, which can speak by 

synthesizing text from a database into speech, can present the products of an e-commerce 

company. This can engage e-customers both visually and aurally. 
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5. Gun Control 

VUIs can also be used in gun-control systems. For example, if the fire controls of 

a warship or a tank gun have a speech-recognition capability, the controller can tell the 

gun to slew right and fire. Then a diagnosis on the gun’s condition may be asked. 

Obviously, recognition accuracy becomes a critical requirement. 

 

C. THESIS GOALS 
The overall goals of this thesis are to 

• Perform a background search on speech-recognition technology to find a 

suitable component for this project, 

• Develop a VUI (Voice User Interface) that maps between human voice 

commands and a set of animations of the avatar, thus providing voice 

access to an animation application, 

• Build a motion library to animate available humanoids, 

• Demonstrate interchangeability of the behaviors and the humanoids, 

• Create an integrated humanoid animation application driven by a human 

voice. 

 

D. THESIS ORGANIZATION 

Six chapters comprise this research: 

• Chapter I–Introduction:  Identifies the purpose and motivation behind 

conducting this research.  Establishes the goals for the thesis. 

• Chapter II–Related Work:  Provides information on humanoid models, and 

the previous research conducted in this area. 

• Chapter III–Speech-Recognition Technology:  Introduces background 

information and basic concepts of Speech Recognition. 
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• Chapter IV–Java Speech API:  Provides an overview for the Java Speech 

API and describes the speech technologies that are supported through Java 

Speech API. 

• Chapter V–Implementation: Building Voice-Enabled Humanoid 

Animation: Describes the general system structure, software components 

and implementation process.  

• Chapter VI–Conclusion and Recommendations Future Work: Explains the 

conclusions and provides recommendations regarding possible future 

work. 
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II. RELATED WORK 

A. INTRODUCTION  
This chapter provides an overview to Virtual Reality Modeling Language 

(VRML), Extensible 3D (X3D) and Kinematics. It further examines Humanoid 

Animation Working Group, Humanoid Animation Specifications and Humanoid Models.   

 

B. VIRTUAL REALITY MODELING LANGUAGE (VRML) 
The Virtual Reality Modeling Language (VRML) is a file format for describing 

interactive 3D objects and worlds. VRML is designed to be used on the Internet, 

intranets, and local client systems. VRML is also intended to be a universal interchange 

format for integrated 3D graphics and multimedia. Moreover VRML may be used in a 

variety of application areas such as engineering and scientific visualization, multimedia 

presentations, entertainment and educational titles, web pages and shared virtual worlds. 

VRML is capable of representing static and animated dynamic 3D and multimedia 

objects with hyperlinks to other media such as text, sounds movies and images. The 

VRML Specification is an International Standards Organization (ISO) specification 

(ISO/IEC 14772-1:1997). VRML also provides a large number of 3D graphics nodes, 

which are organized in a hierarchy within a file, to compose a directed acyclic graph 

(DAG) called a scene graph  [Brutzman, 1998].  

VRML file extension is .wrl or .wrz (if the file is gzip-compressed). A VRML 

file can contain four main types of components:  

• The VRML Header,  

• Prototypes,  

• Shapes (geometry and appearance), Interpolators, Sensors and Scripts,  

• ROUTEs. [Ames, 1997]  

The only required element that VRML file must contain is the VRML header. 

Prototypes (PROTOs) allow a user to author new 3D graphic node types and can be 

formed into libraries and reused by referencing them inside an external prototype 
7 



(EXTERNPROTO). Shapes encompass both object geometry and appearance. Sensors 

allow users to interact with the scene. Script nodes provide an interface between the 

VRML scene and a program script; usually written in Java or JavaScript (i.e. 

ECMAScript). Script nodes are very important in creating complex actions and 

animations. Finally, routes are statements, which define connections between named 

nodes and fields by allowing events to be passed from source to target. 

 
   Figure 2.1   HelloWorld.wrl Scen

         http://www.web3d.org/TaskGroups/x3d/t

 

C. EXTENSIBLE 3D (X3D) GRAPHIC
AUTHORING TOOL 

The X3D Graphics Working Group is d

generation Extensible 3D (X3D) Graphics spec

8 
# VRML V2.0 utf8 
Group { 
  children [ 
    Viewpoint { 
      description "hello, wor

0 1.57 
ld!" 

      orientation 0 1 
      position 6 -1 0 
    } 
    NavigationInfo { 
      type [ "EXAMINE" "ANY" ] 
    } 
    Shape { 
      geometry DEF S Sphere { 
      } 
      appearance Appearance { 
 texture ImageTexture { 
   url [ "earth-topo.png" 
"http://www.web3D.org/TaskGroups/x3d/tran

slation/examples/earth-topo-small.gif" ] 
 }

} 
 

      
    } 
    Transform { 
      rotation 0 1 0 1.57 
      translation 0 -2 1.25 
      children [ 
 Shape { 
   geometry Text { 
     string [ "Hello" "world!" ] 
   } 
   appearance Appearance { 
     material Material { 
       diffuseColor 0.1 0.5 1 
     } 
   } 
 }

] 
 

      
}     

]   
} 
e and Source [Brutzman, 2000] 
ranslation/examples/HelloWorld.x3d, .wrl 

S SPECIFICATION AND X3D-EDIT 

esigning and implementing the next-

ification. The X3D is scene graph 

http://www.web3d.org/TaskGroups/x3d/translation/examples/HelloWorld.x3d
http://www.web3d.org/TaskGroups/x3d/translation/examples/HelloWorld.wrl


architecture and encoding that improves on the Virtual Reality Modeling Language 

(VRML) international standard (VRML 97, ISO/IEC 14772-1:1997). X3D uses the 

Extensible Markup Language (XML) to express the geometry and behavior capabilities 

of VRML. X3D is thus a backward-compatible XML tagset for describing the VRML 

200x standard for Web-capable 3D content. Such content is not static but dynamic, 

driven by a rich set of interpolators, sensor nodes, scripts, and behaviors.  [Brutzman, 

Blais, Horner, Nicklaus 2001] 

X3D-Edit is a graphics file editor for Extensible 3D (X3D) that enables simple 

error-free editing, authoring and validation of X3D or VRML scene-graph files. Context-

sensitive tooltips provide concise summaries of each VRML node and attribute. These 

tooltips simplify authoring and improve understanding for both novice and expert users. 

X3D-Edit is being used to develop and test the Extensible 3D (X3D) tagset for the next-

generation Virtual Reality Modeling Language (VRML 200x).  

X3D-Edit uses the XML tagset defined by the X3D Compact Document Type 

Definition (DTD) in combination with Sun's Java, IBM's Xeena XML editor, and an 

editor profile configuration file.  

 
 Figure 2.2   Screen Shot of  X3D-Edit While Editing HelloWorld.xml  
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D. KINEMATICS 

Kinematics is the study of motion, in particular of the relationships of the various 

quantities of motion to one another. Specifically, kinematics deals strictly with position 

and orientation (i.e. posture). In contrast, dynamics considers forces and moments in 

combination with kinematics. At first glance, kinematics may seem like 17th century 

physics, but in fact it is the formal basis of almost all translation/scaling/rotating motion. 

Kinematics can provide a model of the human skeleton as well as of a steam engine. As 

such, kinematics is a fundamental science for the computer animator because it studies 

and catalogs knowledge about motion–the continuous change of place or position. 

[Pocock, Rosebush 2002] 

The most basic kinematic element for articulated or rigid body kinematics is the 

link, which is a rigid moving part. Links are joined into linkages by the use of joints. The 

simplest kind of linkage is the kinematic pair, which consists of two links organized so 

that one is constrained to rotate about a pivoting joint, or to move back and forth inside a 

slide. The kinematic pair is the nucleus of kinematics. Connecting kinematic pairs with 

joints produces a kinematic chain, also called articulated chain or simply chain. Many 

computer animation programs incorporate the use of these fully jointed kinematic chains. 

Moving one link will result in the flexible movement of all the attached links. 

The endpoints of the different links in the kinematic chain have special names. 

The proximal end is the fixed end of the first link in the chain. The root is a point at the 

proximal end that is the point of articulation of the link; thus, the root is a joint. The distal 

end is the end of the final link in the chain. The end effector (or just effector) is the point 

at the distal end that can be used to move the link and chain. 

A skeleton, also known as an armature, is a hierarchy of articulated chains. A link 

in the hierarchy is said to be a parent link if there is a link or structure of links below it in 

the hierarchy. Similarly, a link is said to be the child of the link just above itself in the 

hierarchy. Each child can be transformed independently of other nodes in the hierarchy. 

Transformations applied to a parent propagate down to all of its children. Each level of 

the hierarchy has its own coordinate system and its own local origin. Objects rotate 

around their own center. A branch rotates around its parent’s center. In mathematical 
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terms, the kinematic chain is represented as a concatenated ordered sequence of 

translation, scale, and rotation, most typically calculated by using matrix algebra. 

A kinematic model is a kinematic chain together with the geometry that surrounds 

the chain; the chain defines the relationship between the parts. There are two basic types 

of  kinematic models: those that incorporate a rigid geometry and those that incorporate a 

flexible geometry. This flexible geometry, sometimes referred to as a skin or envelope, 

moves and deforms as the underlying chain moves. 

 

1.       Forward Kinematics 

One of the most elementary ways to animate chains is to use forward kinematics, 

a technique whereby the animator specifies each joint angle for each pivot in an 

articulated chain or hierarchy, starting from the root of the chain and working downward. 

That is, the transformations being applied to the chain are applied to the root first and 

then work their way down to the distal end. The animator or computer animation program 

needs to determine all of the angles and positions. Typically, the specification of angles is 

not done for every frame, but only for the extreme positions, or key frames, with the 

computer used to calculate the in-between frames. 

 The advantage of this method is that the animator has full control of all the joints. 

The disadvantage is that there are a great many degrees of freedom to control, scripting is 

tedious, and if the angles are not controlled masterfully, the resulting animated action will 

not be convincing. 

 

2.       Inverse Kinematics 
Since the animator has to specify all of the positions throughout the animation, 

forward kinematics becomes difficult to use once the models go beyond simple objects.  

Inverse kinematics is a method that allows the animator to specify the position 

and orientation of the end effector. The animation program calculates all of the 

intermediate joint angles and then positions all of the individual pieces of the chain. The 

position of the end effector is specified in terms of a goal (for example, where the hand 

needs to be) and hence is also called goal-directed animation. Inverse kinematics 
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concerns specifying a goal, and then computing automatically and correctly how to 

achieve a goal in a physically valid manner. The inverse kinematics approach, originated 

in the field of robotics, has the advantage of fixing positions and/or accelerations in 

advance, and letting the computer calculate the intermediate values. 

It is noteworthy that no single solution to an inverse kinematics problem exists; 

there may be many different ways to position the intermediate joints to achieve the same 

goal position of the end effector. As long as a solution obeys the basic constraints of the 

mechanical system, it is a valid solution. The result is an envelope of permissible 

solutions. [Pocock, Rosebush 2002] 

   

E.      HUMANOID ANIMATION (H-ANIM) WORKING GROUP AND H-ANIM 

SPECIFICATIONS 

H-Anim Working Group exists for the sole purpose of creating a standard 

representation for humanoids.  H-Anim is a working group of the Web3D Consortium. 

H-Anim’s aim is to specify a way of defining interchangeable humanoids and 

animations. Animations include limb movements, facial expressions and lip 

synchronization with sound. One of the most important goals is to allow people to author 

humanoids and animations independently. 

H-Anim Working Group published three specifications by the time this thesis was 

being written: 

• H-Anim 1.0 Specification, http://h-anim.org/Specifications/H-Anim1.0/ 

• H-Anim 1.1 Specification, http://h-anim.org/Specifications/H-Anim1.1/ 

• H-Anim 200x Specification (Draft), 

 http://www.h-anim.org/Specifications/H-Anim2001/ 

The most important difference between the H-Anim 200x specification and the 

others is that it will be independent of VRML97. However, H-Anim Working Group 

decided to describe the nodes using syntax familiar to the H-Anim community.  In this 
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manner everyone can examine the changes without being confused by the descriptions 

used. An overview of H-Anim 2001 Specification follows. 

The human body consists of a number of segments (such as the forearm, hand and 

foot), which are connected to each other by joints (such as the elbow, wrist and ankle). In 

order for an application to animate a humanoid, it must obtain access to the joints and 

alter the joint angles. The application may also need to retrieve information about such 

elements as joint limits and segment masses.  

A mesh of polygons typically defines each segment of the body, and an 

application may need to alter the locations of the vertices in that mesh. The application 

may also need to obtain information about which vertices are to be treated as a group for 

the purpose of deformation.  

An H-Anim file contains a set of joint nodes that are arranged to form a hierarchy. 

Each joint node can contain other joint nodes and may also contain a segment node, 

which describes the body part associated with that joint. Each segment can also have a 

number of site nodes, which define locations relative to the segment. Sites can be used 

for attaching clothing and jewelry and can be used as end-effectors for inverse kinematics 

applications. They can also be used to define eye points and viewpoint locations.  

Each Segment node can have a number of displacer nodes that specify which 

vertices within the segment correspond to a particular feature or configuration of vertices.  

The file also contains a single humanoid node, which stores human-readable data 

about the humanoid such as author and copyright information. That node also stores 

references to all the joint, segment and site nodes, and serves as a "wrapper" for the 

humanoid. In addition, it provides a top-level Transform for positioning the humanoid in 

its environment. [H-Anim 2001] 

The H-Anim Specification defines some abstractions for segments and joints to 

allow a human body to be described in a structured and standardized way. An H-Anim 

body is typically built as a series of nested joint nodes, each of which may have a 

segment associated with it. The Specification also provides naming conventions for joints 

and their associated segments. (see Figure 2.3)  
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Figure 2.3   H-Anim 1.1 Specification Joint, Segment and Site Hierarchy [H-Anim 1.1] 
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F.        HUMANOID MODELS 

 

1. Nancy 

Nancy is the canonical exemplar of H-Anim 1.1 Specification. The model was 

created by Cindy Ballreich, who grants permission for the use of Nancy for this project. 

Nancy.wrl consists of  2082   polygons and contains 17 joints, 15 segments and 4 

viewpoints. It also contains a motion library with four behaviors: Stand, Walk, Run, 

Jump. Clicking on the appropriate text, which a Touch Sensor is attached, can activate 

these behaviors. (see Figures 2.4 – 2.7)   

 

      
      Figure 2.4   Nancy Demonstrating the Stand Behavior 
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   Figure 2.5   Nancy Demonstrating the Walk Behavior 

 

        

    Figure 2.6   Nancy Demonstrating the Run Behavior 
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       Figure 2.7   Nancy Demonstrating the Jump Behavior 
 

2. Allen 

Allen, created by Allen Dutton, consists of 10,000 polygons. It was initially a 

laser scan data cloud. At Naval Postgraduate School (NPS), its author converted it to a 

fully articulated, texture-mapped avatar that is capable of scripted movement [Dutton 

2001]. The following steps were taken for this conversion:  

• Polygon Reduction, 

• Translating between File Formats (.ply  to .wrl), 

• Segmenting, 

• Constructing the Avatar. Nancy was the foundation for the Allen.  
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Figure 2.8  Allen; A Texture Mapped, Fully Articulated Avatar Converted from Laser 
Scan Data Cloud [Dutton 2001] 

 

3. Box Man 
Box Man, created by James Smith, is a seamless VRML Human demonstrating 

the H-Anim 2001 Specification. Seamless objects are the collection of polygons that 

consist of vertices, which do not lose their integrity even if a transformation is applied. A 

deformation engine provides this feature. Another significant difference is that Box Man 

has a skin, which Nancy and Allen do not have.  
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Figure 2.9   Box Man; A Seamless Avatar 

 

G. INTEGRATING VIRTUAL HUMANS INTO NETWORKED VURTUAL 
ENVIRONMENTS (Net-VEs) 

Virtual humans are virtual organisms, which bring dynamism to virtual worlds. 

Providing an interface to aggregate and control articulated humans in a networked virtual 

environment (Net-VE) is a major issue. Tom Miller achieves this objective in his thesis 

[Miller 2000] by addressing the following areas: 

• Virtual human avatars must have an articulated joint structure and at least a 

limited motion library in order to model realistic movement. 
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• A set of rule-based physical and logical behaviors for groups of humans must 

be developed and implemented in order to execute basic tactical formations 

and activities. 

• Human entities must be able to aggregate into a group or mount other human 

entities (such as vehicles) and then separate back to individual entity control. 

Otherwise, the high-precision relative motion needed for group activities is 

not possible across network delays or in geo-referenced locations. 

 

H.        SUMMARY 
 This chapter discussed the Virtual Reality Modeling Language (VRML), 

Extensible 3D (X3D) and Kinematics. In addition, Humanoid Animation Working 

Group, Humanoid Animation Specifications and Humanoid Models were examined.   

 

 

 

 

 

 

 

 

 

 

 

 

20 



III. SPEECH-RECOGNITION TECHNOLOGY 

A. INTRODUCTION  
This chapter introduces the history, basic concepts of speech recognition and 

explains how the speech-recognition process works. Factors affecting speech-recognition 

accuracy follow.  

 

B. WHAT MAKES EACH HUMAN VOICE DISTINCT? 
 This question is a significant one, if the amount of variations in a human voice is 

considered. Otolaryngology gives a physiological answer: 

The vocal cords provide the sound source for speech. The length of the vocal 

cords determines the pitch of the voice; longer vocal cords produce lower-pitched (more 

masculine) tones. However, the vocal cords contribute only partially to the overall voice. 

In fact, outside the human body, the cords can only make a very unpleasant buzzing 

sound. Another important factor is the resonating chamber of the throat and nasal 

cavities. These cavities uniquely shape the sound of a person's voice for each individual, 

molding the buzzing sound from the larynx into a sound with character. Lastly, the 

muscles in the tongue, palate and lips provide the articulation to the voice. These 

articulator muscles determine elements, such as accent, lisp, or other distinctive speech 

patterns. When these factors are combined, a considerable amount of variation may 

influence a person's voice characteristics. [Simpson 99] 

 

C. HISTORY 
Interestingly, a toy company logged the first success story in the field of speech 

recognition many decades before major research in the area was considered.  “Radio 

Rex” was a celluloid dog that responded to its spoken name.  Lacking the computation 

power that drives recognition devices today, Radio Rex was a simple electromechanical 

device. [Maurer] 

The dog was held within its house by an electromagnet.  As current flowed 

through a circuit bridge, the magnet was energized.  The bridge was sensitive to 500 cps 
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of acoustic energy.  The energy of the vowel sound of the word “Rex” caused the bridge 

to vibrate, breaking the electrical circuit, and allowing a spring to push Rex out of his 

house. While Radio Rex was not a commercial success, the toy was no doubt a pioneer in 

speech recognition. 

The U.S. Department of Defense (D.O.D.) sponsored the first academic pursuits 

in speech recognition in the late 1940s.  In an attempt to expedite the processing of 

intercepted Russian messages, the U.S. was eager to develop an automatic language 

translator.  The first and most difficult step required to produce such a system was 

creating the ability to recognize speech. The project was a failure; typical results 

produced faulty translations, such as “the spirit is willing but the flesh is weak” into 

Russian and back into English as “the vodka is strong but the meat is disgusting.” 

However, the D.O.D. recognized how much research was needed to achieve even 

a glimpse of success in speech recognition.  As a result, the government funded the 

Speech Understanding Research (SUR) program at Carnegie Mellon University, MIT, 

and some select commercial institutions.  The agency that funded the research later 

became known as the Defense Advanced Research Project Agency (DARPA). 

In 1952, as the government-funded research began to gain momentum, Bell 

Laboratories developed an automatic speech recognition system that successfully 

identified the digits 0 to 9 when spoken over the telephone.  Major developments at MIT 

followed.  In 1959, a system successfully identified vowel sounds with 93% accuracy.  

Then seven years later, a system with a vocabulary of 50 words was successfully tested.  

In the early 1970s, the SUR program yielded its first substantial results.  The HARPY 

system, at Carnegie Mellon University, could recognize complete sentences that 

consisted of a limited range of syntax. Nevertheless, the computing power it required was 

prodigious; it took 50 contemporary computers to process a recognition channel.  

At this point, at least three key obstacles impeded a commercially viable product: 

computing power, the ability to recognize speech from any person (not just the particular 

voices the system has been designed around), and a continuity-of-speech capability (so 

that the person did…not…have…to…speak…with…constant…pauses…like…this).  
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Nonetheless, the successes of the 1950s and 1960s gained the attention of more 

and more commercial entities, and the most important goal of speech recognition became 

imaginable: Continuous Speech Recognition. 

Companies devoted to commercializing speech recognition became more 

noticeable as the technology became more viable.  Speechworks and Dragon Systems 

were two of the major companies that achieved vast reductions in the amount of 

processing power required by speech-recognition systems. This reduction in the need for 

processing power quickened the arrival of the crucial point at which the available 

processing power in computing systems equaled the processing power required by 

speech-recognition software.  In addition, just as the processing power requirements were 

plummeting, so were the recognition-error rates. The combination of these effects set the 

stage for widespread commercial usage. 

In 1996, Charles Schwab was the first major consumer company to implement a 

speech-recognition system for its vital customer interface.  The system was called Voice 

Broker, and its success led to speech recognition being adopted by the likes of Sears, 

Roebuck and Co., United Parcel Service of America Inc., and E*Trade Securities. 

[NetByTel] 

Technological innovations continued and in 1997, Dragon Systems introduced 

Naturally Speaking the first continuous speech dictation software available.  In 2000, 

TellMe introduced the first global voice portal and later that year NetByTel launched the 

first voice enabler, which allowed users to fill out a web-based data form over the phone. 

[NetByTel] [Maurer] 

 

D. BASIC TERMS AND CONCEPTS 
Speech-recognition technology allows the user to provide input to an application 

with his or her own voice, just like typing on a keyboard or clicking a mouse. The 

software component, which performs the speech-recognition process, is called the 

speech-recognition engine. The speech-recognition engine processes the spoken input 

and translates it into text, which an application understands. If the application handles the 

recognized text simply as text and dictates the input, then it is considered a dictation 
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application. An example of a dictation application is that the user says, “Open a new 

document,” and the application returns the text, “Open a new document.” If the 

application interprets the result of the recognition process as a command, then it is a 

command and control application. For instance, the user says, “Open a new document,” 

and the application opens a new document within a word processor program. Following 

are the basic terms and concepts that are fundamental to speech recognition. 

 

1. Phonemes 
Phonemes are the smallest sound units of which words are composed. A speech-

recognition system stores a list of what phonemes sound like. That is, a table of relative 

formant positions is kept by the software, and the frequencies extracted from one’s 

speech are compared to this table. Phonemes can be placed in categories depending on 

the distinctive features they share.  These categories are 

a. Voiced Phonemes 
Voiced phonemes consist of vowels and consonants, which use the vocal 

chords. i.e. “y,” “g” and “ng.” 

b. Unvoiced Phonemes 
Unvoiced phonemes consist of consonants, which don’t involve the vocal 

chords. i.e. “s” and “sh.” 

c. Nasal Phonemes 
Nasal phonemes consist of consonants such as “n” and “m,” which are 

produced in the nasal passages. [Kavanagh 95]  

 

2. Acoustic Model 
The acoustic model captures the acoustic properties of speech and provides the 

probability of the observed acoustic signal when given a hypothesized word sequence. 

The acoustic model can trace the differences in speech signals and then compare the 

features of these signals with known features of a language’s basic sounds in order to 

determine the spoken words.  However, tracing the difference is not that simple, since a 

great deal of variety between any two acoustic signals is caused by factors such as 

different speakers, different emotions, and different speech rates. 
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3. Utterance 
An utterance is any stream of speech between two periods of silence. Utterances 

are sent to the speech engine to be processed. Since silence delineates the start and end of 

an utterance, it is almost as important as what is spoken. When the speech-recognition 

engine detects audio input, the beginning of an utterance is signaled. Similarly, when the 

engine detects a certain amount of silence following the audio, the end of the utterance 

occurs. If the user does not say anything, the engine returns a silence timeout, which 

indicates that no speech was detected within the expected timeframe. In this case, the 

application may take an appropriate action, such as reprompting the user for input. An 

utterance can be a single word, or it can contain multiple words (a phrase or sentence). 

Whether these words and phrases are valid at a particular point in a dialog is determined 

by active grammars. If the user pauses too long between the words of a phrase, the end of 

an utterance can be detected too soon, and the engine will only process a partial phrase. 

 

4. Pronunciation 
 The speech-recognition engine uses a great variety of disparate data, statistical 

models, and algorithms to convert spoken into text. One piece of information that the 

speech engine uses to process a word is its pronunciation, which represents what the 

speech engine predicts a word will sound like. Words can have multiple pronunciations. 

The application developer may want to provide multiple pronunciations for certain words 

and phrases to allow variations in the ways user may speak them. 

 

5. Grammar 
The allowed order of words and phrases that users can say to the speech-

recognition application must be specified. These words and phrases are defined to the 

speech-recognition engine and are used in the recognition process. A grammar uses a 

particular syntax, or set of rules to define the words and phrases that can be recognized 

by the engine. A grammar can be as simple as a list of words, or it can be flexible enough 

to allow such variability in what can be said that it approaches natural language 

capability. Grammars define the domain, or context, within which the recognition engine 
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works. The engine compares the current utterance against the words and phrases in the 

active grammars. If the user says something that is not in the grammar, the speech engine 

will not be able to decipher it correctly. The design of application grammars needs to be 

thought out carefully. They can be as restrictive or as flexible as the user and application 

need them to be. Since there are tradeoffs between recognition speed (response time) and 

accuracy versus the size of the grammar(s), an application designer may experiment with 

different grammar designs to validate one that best matches the users’ requirements and 

expectations. 

 

6. Natural Language Commands 

Natural Language Commands are aimed at providing a more intuitive way of 

using a speech-recognition application. Rather than having to speak commands by 

reading from menus, the user can informally state the desired actions and the software 

intelligently interprets the instructions to perform the task. This technology is still in its 

infancy and is limited in what applications and actions it can support, but it holds great 

promise. [PCMagazine 99] 

An unrestricted natural language interface is generally considered an enticing 

prospect because, if it could be implemented, it would offer many advantages: it would 

be easy to learn and easy to remember, because its structure and vocabulary are already 

familiar to the user; because the same language could be used for many application, there 

might be fewer transfer problems between applications; they are particularly powerful 

because of the multitude of ways in which to accomplish an action; and they also allow 

considerable flexibility in executing the steps of a task. [Long 94] 

 

7. Training 
Most of the recognition applications require an initial training and enrollment 

process in order to teach the software to recognize the user’s voice. A voice profile that is 

unique to that individual is then produced. This procedure also helps the user learn how 

to speak to a computer. After the initial training, the program’s accuracy will improve as 

the user dictates by correcting the mistakes in transcription. Another way the program 
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improves in accuracy is by analyzing existing documents for new words and for the 

user’s syntax. These three steps–initial training, making corrections, and vocabulary 

analysis–are common for almost all dictation applications. [Fulton 2000] 

 

8. Speaker Dependence vs. Speaker Independence 
Speaker dependence describes the degree to which a speech-recognition system 

requires knowledge of a speaker’s individual voice characteristics to process speech. The 

speech-recognition engine can learn how the user speaks words and phrases; it can be 

trained to recognize the user’s voice. Speech-recognition systems that require a user to 

train the system to his or her voice are known as speaker-dependent systems. Most 

dictation applications are speaker dependent. Because they operate on very large 

vocabularies, dictation applications perform much better when the speaker has spent 

several hours to train the system to his or her voice. 

Speech-recognition systems that do not require a user to train the system are 

known as speaker-independent systems. These systems successfully process the speech 

of many different users without having to understand each individual’s voice 

characteristics. 

 

9. Accuracy 
The most widely used measurement to define the performance of a speech-

recognition system is accuracy, typically a quantitative measurement that can be 

calculated in several ways. The most important measurement of accuracy is whether the 

desired end result occurred, which is useful in validating application design. For example, 

if the user says “yes,” the engine returns “yes,” and the “yes” action is executed, then 

desired end result is clearly achieved. Nevertheless a condition in which the text returned 

by the engine does not exactly match the utterance may occur. For instance, what if the 

user says “nope,” the engine returns “no,” yet the “nope” action is executed?  Should this 

dialog be considered successful? This example is successfully accurate, because mostly 

due to choice of grammar the desired end result is achieved.  
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Another measurement of recognition accuracy is whether the engine recognized 

the utterance exactly as spoken. This measure of recognition accuracy is expressed as a 

percentage and represents the number of utterances recognized correctly out of the total 

number of utterances spoken. Using the previous example, if the engine returns “no” 

when the user says “nope,” this is considered a recognition error. Based on the accuracy 

measurement, the grammar may be analyzed to improve accuracy.  

 

E. HOW IT WORKS 
Basic terms and concepts of speech-recognition technology are presented in 

previous sections. These terms are now linked to show how the speech-recognition 

process works.  

A microphone converts the user’s voice into an analog signal and feeds it to the 

PC’s sound card. An analog-to-digital converter takes the signal and converts it to a 

stream of digital data. The software receives the digital data and processes it. The 

acoustic model removes noise and unneeded information such as changes in volume. 

Using mathematical calculations, the model reduces the data to a spectrum of frequencies 

(the pitches of the sound), analyzes the data, and converts the words into digital 

representations of phonemes. The speech-recognition engine has a rather complex task to 

handle, namely taking raw audio input and translating it to a recognized text, which an 

application understands. Once the data is in the proper format, the engine searches for the 

best match. The engine does this by considering the words and phrases it recognizes (i.e. 

the active grammars), along with its knowledge of the environment in which it is 

operating. The knowledge of the environment is provided in the form of an acoustic 

model. Once the engine identifies the most likely match for what was said, it returns a 

result as a string. Most speech engines try very hard to find a match and are usually very 

forgiving. But it is important to note that the engine always returns its best guess. 

The result, which the recognition engine returns, can be either of two states: 

acceptance or rejection. The engine flags acceptance or rejection with each processed 

utterance. An accepted utterance is one in which the engine returns recognized text. 

Sometimes the match may be poor because the user said something that the application 
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cannot accept, or the user spoke indistinctly. In these cases, the speech engine returns the 

closest match, which might be incorrect. Some engines also return a confidence score 

along with the text to indicate the likelihood that the returned text is correct. Figure 3.1 

illustrates the major components of speech recognition. 
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     Figure 3.1   Major Components in a Speech-Recognition System [
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perform with very low error rates as long as the environmental conditions 

remain controlled, constant and quiet. Performance degrades when noise is 

added to the scenario or when the environment differs from the training 

session used to make the reference templates. 

• Hardware: Computers set up to use speech-recognition software must be 

on the leading edge rather than the trailing edge. They must be fast and 

have expansive memory (cache and RAM). Sound cards and microphone 

quality are further factors. 

• Speaker / User: The clarity and naturalness of the speaker’s annunciation 

significantly affects the accuracy. Users with accents or atypical voices 

may result in lower accuracy. Single-user input is easier to recognize than 

speech from multiple speakers because most representations of speech are 

sensitive to characteristics of the speaker. If there is variety of speakers, 

the pattern-matching templates and models for one person might not 

perform as well for some individuals as for others. To improve accuracy, 

training is essential in many speech-recognition applications. These 

applications require the user to train with the system so the program 

becomes accustomed to the user’s unique voice characteristics. 

• Vocabulary Size: A vocabulary is the collection of words that the pattern-

matching algorithm knows and compares the input against. Larger 

vocabularies are more likely to contain ambiguous words than smaller 

vocabularies. Ambiguous words are those with similar pattern-matching 

templates. These words can confuse the recognition algorithms. Also, 

when the vocabulary size increases, searching the speech-model database 

takes longer, thus software and application designers have to weigh faster 

response time against higher recognition accuracy when expanding the 

allowed vocabulary. 

• Grammar: The grammar of the recognition domain defines the allowable 

sequence of words. A tightly constrained grammar is one in which the 

number of words that can follow any certain word is small. The amount of 
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constraint on word choice is referred to as the perplexity of the grammar. 

Systems with low perplexity are potentially more accurate than those that 

give the user more freedom because the system limits the vocabulary and 

the search space to those words that can occur according to the current 

context. 

 

G. SUMMARY 
This chapter provides background information about the history and basic 

concepts of speech recognition. Operation of the speech-recognition process and  

factors affecting the accuracy are explained. 
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IV. THE JAVA SPEECH API 

A. INTRODUCTION 
This chapter examines the Java Speech API and describes the speech technologies 

that it supports. 

 

B. OVERVIEW 
The Java Speech API, developed by Sun Microsystems in cooperation with 

speech technology companies, defines a software interface that allows developers to take 

advantage of speech technology for personal and enterprise computing [JSAPI 1.0]. By 

leveraging the inherent strengths of the Java platform, the Java Speech API enables 

developers of speech-enabled applications to incorporate more sophisticated and natural 

user interfaces into Java applications and applets that can be deployed on a wide range of 

platforms.  

The Java Speech API defines a standard, cross-platform software interface to 

state-of-the-art speech technology. Two core speech technologies are supported through 

the Java Speech API: speech recognition and speech synthesis. Speech recognition allows 

computers to listen to spoken language and to determine what has been said. In other 

words, speech-recognition processes audio input containing speech by converting it into 

text. Speech synthesis provides the reverse process of producing synthetic speech from 

text provided by an application, an applet or a user. Speech synthesis is often referred to 

as text-to-speech (TTS) technology.  

Speech interfaces give Java application developers the opportunity to implement 

distinct and engaging personalities for their applications and to differentiate their 

products. The Java Speech API is an extension to the Java platform. Extensions are 

packages of classes written in the Java programming language (and any associated native 

code) that application developers can use to extend the functionality of the core part of 

the Java platform.  
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The design goals for the Java Speech API were:  

• Provide support for speech synthesizers and for both command-and-

control and dictation speech recognizers,  

• Provide a robust cross-platform, cross-vendor interface to speech synthesis 

and speech recognition, 

• Enable access to state-of-the-art speech technology, 

• Support integration with other capabilities of the Java platform, including 

the suite of Java Media APIs. 

 

C. CORE SPEECH TECHNOLOGIES 

1. Speech Synthesis 

A speech synthesizer converts written text into spoken language. Speech synthesis 

is also referred to as text-to-speech (TTS) conversion.  

The major steps in producing speech from text are as follows:  

• Structure Analysis: Process the input text to determine where paragraphs, 

sentences and other structures start and end. For most languages, 

punctuation and formatting data are used in this stage.  

• Text Pre-Processing: Analyze the input text for special constructs of the 

language. In English, special treatment is required for abbreviations, 

acronyms, dates, times, numbers, currency amounts, e-mail addresses and 

many other forms. Other languages need special processing for these 

forms and most languages have other specialized requirements.  

The result of these first two steps is a spoken form of the written text. The 

following table (Table 4.1) demonstrates examples of the difference between written and 

spoken text.  
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Written Text  

(Before Pre-Processing) 
 

 
Spoken Text 

(After Pre-Processing) 

 
Leave at 6:30 on 6/15/99. 
 

 
"Leave at six thirty on June fifteenth  
nineteen ninety nine." 
 

 
Add $50 to account 69243. 
 
 

 
"Add fifty dollars to account six nine, two 
four three." 
 

 
Table 4.1   Written and Spoken Text Examples 

 

The remaining steps convert the spoken text to speech.  

• Text-to-Phoneme Conversion: Convert each word to phonemes. US 

English has around 45 phonemes including the consonant and vowel 

sounds. For example, "times" is spoken as four phonemes "t ay m s." 

Different languages have different sets of sounds (different phonemes). 

For example, Japanese has fewer phonemes, including sounds not found in 

English, such as "ts" in "tsunami."  

• Prosody Analysis: Process the sentence structure, words and phonemes to 

determine the appropriate prosody for the sentence. Prosody includes 

many of the features of speech other than the sounds of the words being 

spoken. This includes the pitch (or melody), the timing (or rhythm), the 

pausing, the speaking rate, the emphasis on words and many other 

features. Correct prosody is important for making speech sound right and 

for correctly conveying the meaning of a sentence.  

• Waveform Production: Finally, the phonemes and prosody information are 

used to produce the audio waveform for each sentence. The speech can be 

produced from the phoneme and prosody information in many ways. Most 

current systems achieve this in one of two ways: concatenation of pieces 
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of recorded human speech, or formant synthesis using signal processing 

techniques based on knowledge of how phonemes sound and how prosody 

affects those phonemes.  

 

a.  Speech-Synthesis Limitations  
Speech synthesizers can make errors in any of the processing steps 

described above. Human ears are well-tuned to detecting such errors, so careful work by 

developers is needed to minimize errors and improve the speech-output quality.  

 

b. Speech-Synthesis Assessment  
The major feature of a speech synthesizer that affects its understandability, 

its acceptance by users, and its usefulness to application developers is output quality. 

Knowing how to evaluate speech synthesis quality and knowing the factors that influence 

the output quality are important when deploying speech synthesis.  

Humans are conditioned by a lifetime of listening and speaking. The 

human ear and brain are highly sensitive to small changes in speech quality. A listener 

can detect changes that might indicate a user's emotional state, an accent, a speech 

problem or many other factors. The quality of current speech synthesis remains far below 

that of human speech, so listeners must make more effort than normal to understand 

synthesized speech and must ignore errors. For new users, listening to a speech 

synthesizer for extended periods can be tiring and unsatisfactory.  

The two key factors a developer must consider when assessing the quality 

of a speech synthesizer are its understandability and its naturalness. Understandability 

indicates how reliably a listener will understand the words and sentences spoken by the 

synthesizer. Naturalness indicates the extent to which the synthesizer sounds like a 

human voice–a characteristic that is desirable for most applications, but not for all.  

Understandability is affected by a speech synthesizer’s ability to perform 

all the processing steps described previously in combination, because any error by the 

synthesizer can potentially mislead a listener. Naturalness is affected more by the later 
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stages of processing, particularly the processing of prosody and the generation of the 

speech waveform.  

Although the concept might seem counter-intuitive, creating an artificial-

sounding voice that is highly understandable is possible. Similarly, having a voice that 

sounds natural but is not always easy to understand is also possible.  

 

2. Speech Recognition  
Speech recognition is the process of converting spoken language to written text or 

some similar form. The basic characteristics of a speech recognizer supporting   the Java 

Speech API are  

• It is monolingual; it supports a single specified language.  

• It processes a single input audio stream.  

• It can optionally adapt to the voice of its users.  

• Its grammars can be dynamically updated.  

• It has a small, defined set of application-controllable properties.  

The major steps of a typical speech recognizer follow: 

• Grammar Design: Recognition grammars define the words that may be 

spoken by a user and the patterns in which the words may be spoken. A 

grammar must be created and activated for a recognizer to know how to 

listen for incoming audio.  

• Signal Processing: Analyzes the spectrum (frequency) characteristics of 

the incoming audio.  

• Phoneme Recognition: Compares the spectrum patterns to the patterns of 

the phonemes of the language being recognized. 

• Word Recognition: Compares the sequence of likely phonemes against the 

words and patterns of words specified by the active grammars.  

• Result Generation: Provides the application with information about the 

words the recognizer has detected in the incoming audio. The result 
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information is always provided once recognition of a single utterance is 

complete, but this information may also be provided during the 

recognition process. The result always indicates the recognizer's best 

guess of what a user said, but may also indicate alternative guesses.  

The primary way in which an application controls the activity of a recognizer is 

through control of its grammars. A grammar is an object in the Java Speech API, which 

indicates what words a user is expected to say and in what patterns those words may 

occur. Grammars are important to speech recognizers because they constrain the 

recognition process. These constraints make recognition faster and more accurate because 

the recognizer does not have to check for bizarre sentences.  

The Java Speech API supports two basic grammar types: rule grammars and 

dictation grammars. These grammar types differ in the way in which applications set up 

the grammars, the types of sentences they allow, the way in which results are provided, 

the amount of computational resources required, and the way in which they are 

effectively used in application design. Other speech-recognizer controls available to a 

Java application include pausing and resuming the recognition process, direction of result 

events and other events relating to the recognition processes, and control of the 

recognizer's vocabulary.  

In a rule-based speech-recognition system, an application provides the recognizer 

with rules that define what the user is expected to say. These rules constrain the 

recognition process. Careful design of the rules, combined with a careful user-interface 

design, can produce rules that allow users reasonable freedom of expression while still 

limiting the range of what may be said. In this manner, the recognition process is as fast 

and accurate as possible. Any speech recognizer that supports the Java Speech API must 

support rule grammars. The Java Speech Grammar Format Specification defines the full 

behavior of rule grammars, and also discusses how complex grammars can be 

constructed by combining smaller grammars.  

Dictation grammars impose fewer restrictions on what can be said, making them 

closer to providing the ideal of free-form speech input. The cost of this greater freedom is 
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that they require more substantial computing resources, require higher quality audio 

input, and tend to make more errors.  

A dictation grammar is typically larger and more complex than rule-based 

grammars. Dictation grammars are typically developed by statistical training on large 

collections of written text. Fortunately, developers do not need to know any of these 

details because a speech recognizer that supports a dictation grammar through the Java 

Speech API has a built-in dictation grammar. An application that needs to use that 

dictation grammar simply requests a reference to it and enables it when the user might 

say something matching the dictation grammar.  

Dictation grammars may be optimized for particular kinds of text. Often a 

dictation recognizer may be available with dictation grammars for general-purpose text, 

for legal text, or for various types of medical reporting. In these different domains, 

different words are used, and the patterns of words also differ.  

A dictation recognizer in the Java Speech API supports a single dictation 

grammar for a specific domain. The application (or user, or both) select an appropriate 

dictation grammar when the dictation recognizer is selected and created. 

 

a. Speech-Recognition Limitations  
The two primary limitations of current speech-recognition technology are 

inability to robustly transcribe free-form speech input, and errors in accuracy. Most 

recognition errors fall into the following categories:  

• Rejection: The user speaks but the recognizer cannot understand 

what was said. The outcome is that the recognizer does not 

produce a successful recognition result. In the Java Speech API, 

applications receive an event that indicates the rejection of a result.  

• Misrecognition: The recognizer returns a result with words that are 

different from those that the user spoke. This is the most common 

type of recognition error. 

• Misfire: The user does not speak, but the recognizer returns a 

result.  
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Table 4.2 lists some of the common causes of the three types of 

recognition errors.  

 

PROBLEMS POSSIBLE CAUSES 

User speaks one or more words not in the vocabulary.    

User's sentence does not match any active grammar.    

User speaks before system is ready to listen.    

Words in active vocabulary sound alike and are confused (e.g., "too," 

"two.")   

User pauses too long in the middle of a sentence.    

User speaks with a disfluency (e.g., restarts sentence, stumbles, "umm," 

"ah.")    

User's voice trails off at the end of the sentence.    

User has an accent or cold.    

User's voice is substantially different from stored "voice models" (often a 

problem with children).    

Computer's audio is not configured properly.    

 

 

 

 

 

 

Rejection  

or  

Misrecognition 

User's microphone is not properly adjusted.    
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Non-speech sound (e.g., cough, laugh).  

Background speech triggers recognition.    

 

 

Misfire 

User is talking with another person.    

 
Table 4.2   Speech-Recognition Errors and Possible Causes [From JSAPI 1.0] 

 

b. Speech-Recognition Assessment 
Speech recognizers make mistakes. So do people, but recognizers usually 

make more. Understanding why recognizers make mistakes, the factors that lead to these 

mistakes, and how to train users of speech recognition to minimize errors are important 

concepts for speech application developers.  

The reliability of a speech recognizer is most often defined by its 

recognition accuracy. Accuracy is usually given as a percentage and is most often the 

percentage of correctly recognized words. Because the percentage can be measured 

differently and depends greatly upon the task and the testing conditions, comparing 

recognizers simply by their percentage recognition accuracy is not always possible. A 

developer must also consider the seriousness of recognition errors: misrecognition of a 

bank account number or the command "delete all files" may have serious consequences. 

The following is a list of major factors that influence recognition accuracy.  

• Recognition accuracy is usually higher in a quiet environment. 

• Higher-quality microphones and audio hardware can improve 

accuracy.  

• Users that speak clearly (but naturally) usually achieve better 

accuracy.  

• Users with accents or atypical voices may obtain lower accuracy.  
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• Applications with simpler grammars typically achieve better 

accuracy.  

• Applications with less confusable grammars typically attain better 

accuracy. Similar-sounding words are harder to distinguish.  

While these factors can all be significant, their impact can vary between 

recognizers because each speech recognizer optimizes its performance by trading off 

various criteria. For example, some recognizers are designed to work reliably in high-

noise environments (e.g. factories and mines) but are restricted to very simple grammars. 

Dictation systems have complex grammars but require good microphones, quieter 

environments, and clearer speech from users and more powerful computers. Some 

recognizers adapt their process to the voice of a particular user to improve accuracy, but 

may require training by the user. Thus, users and application developers often benefit by 

selecting an appropriate recognizer for a specific task and environment.  

Only some of these factors can be controlled programmatically. The 

primary application-controlled factor that influences recognition accuracy is grammar 

complexity. Recognizer performance can degrade as grammars become more complex 

and can degrade as more grammars are active simultaneously. However, making a user 

interface more natural and usable sometimes requires the use of more complex and 

flexible grammars. Thus, application developers often need to consider a trade-off 

between increased usability with more complex grammars and the decreased recognition 

accuracy this might cause.  

 

3. Speech Engine 
The javax.speech package of the Java Speech API defines an abstract 

software representation of a speech engine, which is the generic term for a system 

designed to deal with either speech input or speech output. Speech synthesizers and 

speech recognizers are both speech engine instances. Speaker-verification systems and 

speaker-identification systems are also speech engines but are not currently supported 

through the Java Speech API.  
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The javax.speech package defines classes and interfaces that define the basic 

functionality of an engine. The javax.speech.synthesis package and 

javax.speech.recognition package extend and augment the basic functionality 

to define the specific capabilities of speech synthesizers and speech recognizers. 

The Java Speech API makes only one assumption about the implementation of a 

JSAPI engine: that it provides a true implementation of the Java classes and interfaces 

defined by the API. In supporting those classes and interfaces, an engine may be 

completely software-based or may be a combination of software and hardware. The 

engine may be local to the client computer or remotely operating on a server. The engine 

may be written entirely as Java software or may be a combination of Java software and 

native code.  

The basic processes for using a speech engine in an application are as follows:  

• Identify the application's functional requirements for an engine 

(e.g, language or dictation capability),  

• Locate and create an engine that meets those functional 

requirements,  

• Allocate the resources for the engine,  

• Set up the engine, 

• Begin operation of the engine-technically, resume it 

• Use the engine, 

• De-allocate the resources of the engine.  

Applications are responsible for determining their functional requirements for a 

speech synthesizer and/or speech recognizer. For example, an application might 

determine that it needs a dictation recognizer for the local language or a speech 

synthesizer for Korean with a female voice. Applications are also responsible for 

determining behavior when there is no speech engine available with the required features. 

Based on specific functional requirements, a speech engine can be selected, created, and 

started.  
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Functional requirements are handled in applications as engine selection 

properties. Each installed speech synthesizer and speech recognizer is defined by a set of 

properties. An installed engine may have one or many modes of operation, each defined 

by a unique set of properties and encapsulated in a mode descriptor object.  

The basic functionality provided by a synthesizer is speaking text, managing a 

queue of text to be spoken and producing events as these functions proceed. The 

Synthesizer interface extends the Engine interface to provide this functionality.  

The basic functionality provided by a recognizer includes managing the grammar 

and producing results when a user makes utterances that match active grammars. The 

recognizer interface extends the engine interface to provide this functionality. 

 

D. JAVA SPEECH GRAMMAR FORMAT (JSGF) 
Speech-recognition systems provide computers with the ability to listen to user 

speech and determine what is said. Current technology capabilities do not yet support 

unconstrained speech recognition, i.e. the ability to listen to any speech in any context 

and transcribe it accurately. To achieve reasonable recognition accuracy and response 

time, current speech recognizers constrain what they listen for by using grammars.  

The Java Speech Grammar Format (JSGF) defines a platform-independent means 

of describing one type of grammar, a rule grammar (also known as a command and 

control grammar or regular grammar). JSGF uses a textual representation that both 

developers and computers can read and can edit and can be included in the Java source 

code.  

A rule grammar specifies the types of utterances a user might say (a spoken 

utterance is similar to a written sentence). For example, a simple window control 

grammar might listen for "open a file," "close the window," and similar commands. What 

the user can say depends upon the context: Desired results may vary greatly, depending 

on whether the user controlling an email application, reading a credit card number, or 

selecting a font (for example). Applications know their own context based on their 

operations, so applications are thus responsible for providing a speech recognizer with 

appropriate and corresponding grammars.  
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1. Definitions 

a. Grammar Names and Package Names 
Each grammar defined by Java Speech Grammar Format has a unique 

name that is declared in the grammar header. The Full grammar name is in the form of 

package name + simple grammar name, for instance: 

com.sun.speech.apps.numbers. A simple grammar name includes the grammar 

name only, for example:  numbers. The package name and grammar name have the 

same format as packages and classes in the Java programming language.  

 

b. Rulenames 
A grammar is composed of a set of rules that together define what may be 

spoken. Rules are combinations of speakable text and references to other rules. Each rule 

has a unique rulename. A reference to a rule is represented by the rule's name in 

surrounding <> characters (less-than and greater-than).  

Grammar developers should be aware of two specific constraints. First, 

rulenames are compared with exact Unicode string matches, so case is significant. For 

example, <Name>, <NAME> and <name> are different. Second, white space is not 

permitted in rulenames.   

The rulenames <NULL> and <VOID> are reserved. <NULL> defines a 

rule that is automatically matched: that is, matched without the user speaking any words.  

<VOID> defines a rule that can never be spoken. Inserting <VOID> into a sequence 

automatically makes that sequence unspeakable. 

 

c. Tokens 
A token, sometimes called a terminal symbol, is the part of a grammar that 

defines what may be spoken by a user. Most often, a token is equivalent to a word. In 

Java Speech Grammar Format (JSGF), a token is a character sequence bounded by 

whitespace, by quotes or delimited by the other symbols that are significant in the 

grammar. A token is a reference to an entry in a recognizer's vocabulary, often referred to 
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as the lexicon. The recognizer's vocabulary defines the pronunciation of the token. With 

such pronunciation, the recognizer is able to listen for that token.  

A token does not need to be a single word. A token may be a sequence of 

words or a symbol. Quotes can be used to surround multi-word tokens and special 

symbols, for example, the "New York" subway. 

 

d. Comments 
Comments may appear in both the header and body. The comment style of 

the Java Programming Language is adopted. Comments may appear anywhere in a 

grammar definition, except within tokens, quoted tokens, rulenames, tags and weights. 

 

e. Grammar Header 
A single file defines a single grammar. The definition grammar contains 

two parts: the grammar header and the grammar body. The grammar header includes a 

self-identifying header, declares the name of the grammar and declares imports of rules 

from other grammars.  

 

f. Grammar Body 
The grammar body defines rules. Each rule is defined in a rule definition. 

A rule is defined once in a grammar. The order of definition of rules is not significant. 

 

2. Rule Expansions 

The simplest rule expansions are a reference to a token and a reference to a rule. 

For example,  

<a> = horse; 

<b> = <a>; 

<c> = <com.acme.grammar.zenith>; 

The rule <a> expands to a single token "horse." Thus, to speak <a> the user must 

say the word "horse." The rule <b> expands to <a>. This means that to speak <b>, the 
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user must say something that matches the rule <a>. Similarly, to speak rule <c> the user 

must speak something that matches the rule <com.acme.grammar.zenith>. 

 

3. Defining Complex Rules 
Complex rules can be defined by logical combinations of legal expansions using 

the following procedures: 

 

a. Composition and Sequences 
A rule may be defined by a sequence of expansions. A sequence of legal 

expansions, each separated by white space, is itself a legal expansion. 

<where> = I live in Monterey; 

<statement> = this <object> is <Condition>; 

To speak a sequence, each item in the sequence must be spoken in the 

defined order. In the first example, to say the rule <where>, the speaker must say the 

words, “I live in Monterey” in that exact order. The second example mixes tokens with 

references to the rules <object> and <Condition>. To say the rule <statement>, the user 

must say “this” followed by something that matches <object>, then “is,” and finally 

something matching <Condition>.  

A rule may be defined as a set of alternative expansions separated by 

vertical bar characters ‘|’ and optionally by whitespace. For example:  

<name> = Don | Nancy | Allen | Ozan | <otherNames>; 

To say the rule <name>, the speaker must say one, and only one of the 

items in the set of alternatives. For example, a speaker could say, "Don," "Nancy," 

"Allen," "Ozan" or anything that matches the rule <otherNames>. However, the speaker 

could not say "Nancy Allen" because the | operator corresponds to exclusive or.  

It is worthy noting that that Sequences have higher precedence than 

alternatives. 
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b. Grouping 

Any legal expansion may be explicitly grouped using matching 

parentheses ‘()’. Grouping has a high precedence and so can be used to ensure the correct 

interpretation of rules. Grouping is also useful for improving clarity. For example, 

because sequences have higher precedence than alternatives, parentheses are required in 

the following rule definition so that "please close" and "please delete" are legal 

combinations.  

<action> = please (open | close | delete); 

Square brackets may be placed around any rule definition to indicate that 

the contents are optional. In other respects, they are equivalent to parentheses for 

grouping and has the same precedence. For example,  

<polite> = please | oh mighty computer; 

public <command> = [ <polite> ] don't crash; 

The rule <command> allows a user to say, "Don't crash" and to optionally 

add one form of politeness such as, "Oh mighty computer, don't crash" or "Please, don't 

crash." 

 

c. Unary Operators 
There are three unary operators in the Java Speech Grammar Format: the 

Kleene star (*) operator, the Kleene cross (+) operator, and tags. 

A rule expansion followed by the asterisk symbol indicates that the 

expansion may be spoken zero or more times. The asterisk symbol is known as the 

Kleene star (after Stephen Cole Kleene, who originated the use of the symbol). [JSGF] 

For example,  

<polite> = please | oh mighty computer; 

<command> = <polite>*  don't crash; 

The rule <command> allows a user to make an utterance like, "Please 

don't crash," "Oh mighty computer, please, please don't crash," or to ignore politeness 

with "Don't crash."  
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A rule expansion followed by the plus symbol indicates the expansion 

may be spoken one or more times. For example,  

<polite> = please; 

<command> = <polite>+  don't crash; 

The preceding rule requires at least one form of politeness. So, it allows a 

user to say, "Please, please don't crash." However, "don't crash" is not legal.  

Tags provide a mechanism for grammar writers to attach application-

specific information to parts of rule definitions. Applications typically use tags to 

simplify or to enhance the processing of recognition results. Tag attachments do not 

affect the recognition of a grammar. Instead, the tags are attached to the result object 

returned by the recognizer to an application. The software interface of the recognizer 

defines the mechanism for providing tags. 

A tag is a unary operator. As such it may be attached to any legal rule 

expansion. The tag is a string delimited by curly braces ‘{}’. All characters within the 

braces are considered a part of the tag, including white space. 

The tag attaches to the immediate preceding rule expansion (intervening 

white space is ignored). For example,  

<rule> = <action> {tag}; 

As a unary operator, tag attachment has a higher precedence than 

sequences and alternatives. For example,   

<publication> = book | magazine | newspaper {thing}; 

The "thing" tag is attached only to the "newspaper" token. Parentheses 

may be used to modify tag attachment:  

< publication> = (book | magazine | newspaper) {thing}; 

Unlike the other unary operators, more than one tag may follow a rule 

expansion. For example,  

<legalRule> = <action> {tag1} {tag2} {tag3}; // legal 
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Table 4.3 shows two basic grammar examples that define spoken 

commands, which control a window. 

 

 

   grammar com.acme.politeness; 

   // Body 

   public <startPolite> = (please | kindly | could you | 

oh mighty computer)*; 

   public <endPolite> = [ please | thanks | thank you ]; 

 

   grammar com.acme.commands; 

   import <com.acme.politeness.startPolite>; 

   import <com.acme.politeness.endPolite>; 

   /** 

    *  Basic command 

    *  @example please move the window 

    *  @example open a file 

    */ 

public <basicCommand> = <startPolite> <command>    

<endPolite>; 

   <command> = <action> <object>; 

   <action> = open | close | delete | move; 

   <object> = [the | a] (window | file | menu); 

 
Table 4.3   Grammar Examples [From JSGF] 
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E. SUMMARY 

This chapter examines the Java Speech API and describes the speech technologies 

that are supported through Java Speech API. Java Speech Grammar Format (JSGF) and 

the structure of rule grammars are also examined. 
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V. IMPLEMENTATION: BUILDING A NETWORKED,      
VOICE-ACTIVATED HUMANOID ANIMATION 

A. INTRODUCTION  
This chapter discusses the initial system structure, development process and 

implementation details of a networked, voice-activated humanoid animation. An 

assessment of the final product follows.  

The main objective of the initial system is to create humanoid animation driven 

by human voice. VRML-Java communication makes this objective possible. The 

development process involves building a motion library, putting the avatars and 

behaviors together (Interchangeable Actors), voice enabling, networking, and providing 

available commands and feedback.  

 

B. INITIAL LOW-LEVEL SYSTEM STRUCTURE 
System design goals for this project aim to create humanoid animation that a 

human voice can direct. When a user speaks to a microphone that is connected to the 

sound card of a computer, the voice input is provided to a speech-recognition application. 

The speech-recognition application processes this input through predefined acoustic and 

language models. The speech-recognition engine matches the treated input to the active 

grammar rules and outputs one or more results or rejects it.  Rejection is also considered 

as a possible result.  

The output result of the recognition process is the determinant of the active 

animation and geometry. The result is compared with the possible conditions, which 

provides mapping from voice commands to specific predetermined animation behaviors. 

Nevertheless, the model geometry, which is an avatar in this case, is animated according 

to the matched condition. Figure 5.1 illustrates initial low-level system structure. 
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Figure 5.1   Initial Low-Level System Structure of a Voice-Activated Application 
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C. SYSTEM COMPONENTS 

1. IBM VIAVOICE SDK 
The ViaVoice SDK is an implementation of the JavaTM Speech API. The SDK 

supports voice-command recognition, dictation, and text-to-speech synthesis, 

incorporating IBM's ViaVoice speech technology into user interfaces. In much the same 

way that Java implementations on Windows are built on top of the native Windows GUI 

capabilities, the ViaVoice SDK, Java Technology Edition is built on top of the native 

speech recognition and synthesis capabilities in the IBM ViaVoice. The SDK then 

exposes the standard Java voice interfaces. In order to run the application using the SDK, 

the user must install an IBM ViaVoice product or ViaVoice executable runtime libraries 

on the computer. Other implementations of a Voice SDK are possible–this work uses 

IBM ViaVoice implementation as an excellent current implementation. The IBM 

ViaVoice SDK is chosen as the basis for building a VUI in this project for two significant 

reasons: 

• The SDK provides access to the ViaVoice engine, which is one of the 

major speech-recognition engines, and provides the opportunity to build a 

customized or standardized voice-enabled application. 

• The application deriving the SDK classes is implemented in Java, which is 

a versatile language that enables authors to create and trigger complex 

animations in VRML/X3D scenes.   

 

2. Human Models 
Since they are compliant with the H-Anim Specifications and they have similar 

skeleton structures, three avatars, Allen, Nancy and Box Man, formed the human models 

used in this thesis. These avatars are described in Chapter II.  

 

3. VRML-Java Communication 
In the first look, VRML may seem like a limited programming language with 

predefined nodes suitable only for 3D graphics rendering. Nevertheless, the Script node 

enables advanced authors to create complex animated 3D scenes. Combining the 
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authoring abilities of VRML with the programming capabilities of Java is possible by 

integrating code and content via this node. 

VRML and Java communicate via Script nodes, which allow authors to connect 

Java variables to VRML fields. Figure 5.2 shows the basic Script node interface. Type 

conversion between Java and VRML can be obtained importing vrml.* class libraries 

[DIS-Java-VRML]. However, Java classes, referred by Script nodes, must extend the 

vrml.node.Script class to interface properly with the VRML browser.  

 

 
 

  Figure 5.2   Script Node Interface [Ames 97] 

 

The data type exposedField indicates that the associated variable has public 

access, whereas the field data type provides only initialization and private access to 

the respective variable. The exposedField data member url contains the location of 

the java class file. This location may be locally on the hard drive or in the Internet. The 

value of the url exposed field specifies a prioritized list of Uniformed Resource Locators 

(URLs), ordered from highest priority to lowest. If the browser cannot find the named file 

in the first location, it tries the second URL in the list, and so on. The fields 

directOutput and mustEvaluate are hints to the browser on how to optimize 

performance. When directOutput is set to FALSE, the script may read, but not write 

the value of any exposedField and eventOut for any node object to which it has 

access. Conversely, when the value of the directOutput field is TRUE, the program 
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script may also write the value of any exposedField and send a value to any 

eventIn of any node value to which it has access. If mustEvaluate is FALSE, the 

browser may postpone program script evaluation. Setting this value to TRUE, forces the 

browser to update when a new value is received by an eventIn for the node. The data 

types eventIn and eventOut are events, which provide interactivity and fluidity to 

the VRML scenes. Events are time-stamped values of data types, and eventIn data 

types of a target node must match exactly the ROUTEd eventOut data types from a 

source node. When a pre-defined event is triggered, the value of the variable is sent along 

with a time-stamp from the eventOut connection to the associated eventIn 

connection. Figure 5.3 shows an example of VRML-Java communication. 

 

 
VRML Scene Graph    Node DEFs                                                 A Java Class Modifying VRML Scene 
 
    Group 
          Viewpoint         firstViewPoint 
          TouchSensor     clickTextToTest   
                touchTime 
          Transform         textPosition 
                translation 
                Shape 
                      appearance 
                           material 
                      geometry 
                            text   messageToUser 
                                 string 
                                 fontStyle 
          Script                 scriptNode 
                url                scriptNodeFieldControl 
                eventIn         startTime 
                field             changedText       USE  messageToUser 

 
import vrml.*; 
import vrml.field.*;  
import vrml.node.*; 
 
public class ScriptNodeFieldControl 
extends Script { 
  eventIn  startTime 
  field  changedPosition 
  field  changedText 
     
  public void initialize()  
   //connect eventIn & fields 
   //set changedText to intermediate 
   //value   
                                        
  public void processEvent(Event touch) 
   //activated by user’s clickTextToTest 
   //changedText & changedPosition field 
   //update 
   //references directly modify VRML 
   //scene 
}  

                field             changedPosition USE  textPosition 
 
 

       Figure 5.3   An Example of VRML-Java Communication [Brutzman 98] 
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Upon starting the VRML scene, the associated java class identified by the script 

node's url field is accessed, and its public method initialize() is called 

automatically. In this method, the fields passed by reference from the VRML file are 

connected to the eventIn and field variables. The programmer may also perform 

any initialization that is deemed necessary, such as positioning or content changes. When 



the user activates the TouchSensor named clickTextToTest by clicking on the text with 

the mouse, an event and time-stamp is sent from touchTime's eventOut to the script 

node's eventIn startTime. This step calls the script node's public method 

processEvent(), which can then perform any desired computations. The 

programmer can then perform any java functionality that is desired and modify the fields 

passed in by reference accordingly. In this example, both the content and position of the 

text string is modified. [Dutton 2001] 

 
D. DEVELOPMENT PROCESS 

1. Building a Motion Library 
A motion library is needed to animate the avatars; Allen, Nancy and Box Man. 

This motion library will be the basis for interchangeable animations. Nancy’s animation 

behaviors are implemented as independent five behaviors; Stand, Walk, Run, Jump and 

Kneel. These behaviors are created using Prototype definitions and intended to be 

reusable by other humanoids. The created behaviors are examples of forward kinematics, 

that is, each joint angle corresponding to that behavior was specified by the author. 

Prototype nodes in VRML enables authors to create new node types, which 

consist of a node interface and a node body. Fields, exposedFields, eventIns, and 

eventOuts, similar to the program script interface declared in a Script node, describe the 

node interface. The node body describes what the node does and how it does it. A node 

body is defined using any combination of predefined VRML and other prototype nodes. 

Prototype recursion is not allowed. 

A ProtoDeclare defines a new node type that can be used anywhere in the rest of 

the same file. There are times, however, when it is more convenient to put ProtoDeclare 

in an external file, such as when maintaining a library of new node types. In these cases, 

this ProtoDeclare can be accessed by using an ExternProtoDeclare in a different file. 

This new node can then be used and instantiated by ProtoInstance in the rest of the file.  

ProtoDeclares of the animation behaviors are placed in separate files and in this 

way, a motion library is constructed. This library is online at 

http://www.web3d.org/TaskGroups/x3d/translation/examples/HumanoidAnimation/chapt
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er.html. To use one of these animation prototypes in a different humanoid .x3d file, the 

node definition can be referenced by using ExternProtoDeclare (external prototype). 

ExternProtoDeclare includes a URL or a list of URLs that references an external file 

containing the corresponding ProtoDeclare. When the VRML browser encounters the 

ExternProtoDeclare, it finds the new node-type definition in the file specified by the 

URL. That new node type is then available for use anywhere in the rest of the file. Figure 

5.4 shows an example of ExternProtoDeclare, which references one of the behavior 

Protos. 

 

  
Figure 5.4   X3D-Edit Screen Snapshot of Run ExternProto 

http://www.web3d.org/TaskGroups/x3d/translation/examples/HumanoidAnimation

/LOA1_RunAnimation.x3d 

 

2. Putting the Avatars and Behaviors Together: The Interchangeable 
Actors 
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One of the most important goals of this thesis is to create an example that 

demonstrates interchangeable humanoids and animations. This example was built by 

employing three avatars (Allen, Nancy, and Box Man) and five animation behaviors 

(Stand, Walk, Run, Jump, and Kneel).  

Since a visual editor provides a significant advantage for the author to reduce the 

errors when dealing with complex structures like humanoids, X3D-Edit was used to 

implement this project. As the first step, Allen was converted to X3D native tags because 

an X3D version of it did not previously exist. Then the avatars were put in the same scene 

in such a way that the active one could switch to any of the others. The motion library, 

mentioned previously, is referenced by using ExternProtoDeclares. The behavior 

prototypes were then instantiated. Texts, to which touch sensors are attached, are also 

added to the scene to activate an avatar or a behavior. 

ROUTEs are wires, which connect eventIns to eventOuts and carry events from 

one to another. Hard wiring (static routing) was one of the available options in 

implementing. However this method had some drawbacks such as performance 

degradation (continuous event exchange between inactive avatars and active behavior) 

and expanding complexity (hard to add new avatars and behaviors). Instead, Dynamic 

Routing was used to eliminate these disadvantages. A script (JavaScript) was written to 

provide the connections between the avatars and the behaviors. Only active behavior and 

avatar were wired within the script. First, avatar, avatar joint, and animation behavior 

DEFs were indexed. Then, relevant connections between avatar joints and animation 

behavior interpolators were created and deleted using the addRoute() and 

deleteRoute() methods of Browser class (refer to [VRML 97]) to animate the 

active avatar with the active animation behavior.  The ROUTE redundancy in Static 

Routing can be clearly seen in Figure 5.5. 
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Figure 5.5   Static Routing vs. Dynamic Routing  
 
 

When the user clicks on the relevant text to change the current avatar or behavior, 

the script gets the event and accordingly creates a new ROUTE set between the active 

avatar and behavior after deleting the old Routes. Besides dynamic routing operations, 

the script also handles avatar switching. 
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Figure 5.6   Screen Shot of Interchangeable Actors 

 

3. Voice Enabling  
The Nancy avatar was the first example to be connected to voice activation during 

this project. Instead of using the mouse for selections, a user can state one of the available 

commands to animate Nancy. These one-word commands consisted of four animation 

behaviors: Stand, Walk, Run and Jump. Later, the Allen avatar was voice-activated in the 

same way and a Kneel behavior was further added. These two successful experiences led 

to a more complex task: Voice Activation of Interchangeable Actors. 

IBM ViaVoice SDK, an implementation of Java Speech API, was used to build a 

suitable VUI. A speech recognizer class in Java was written to create necessary objects 

and allocate required resources for speech recognition and synthesizing. Moreover, the 

limit of the dialogue between user and the application must be defined. Since this is an 
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exemplar command and control application, commands available to the user were 

determined. These commands, consisting of one or more words, were divided into two 

groups. The first group was used to initiate the application (opening the browser and 

loading the scene) and the second group was intended for animation (activating avatars 

and behaviors). Based on the determined commands, a grammar in Java Speech Grammar 

Format (refer to Chapter IV) was built for this application. The grammar rules were 

designed so that they provided more than one command option for a specific task. Table 

5.1 indicates legal voice commands in this application. The grammar was located on a 

text file separate from the source code. Otherwise, any change of one of the grammar 

rules required recompiling the code. The grammar rules are read from this text file, and 

then parsed and enabled in the recognizer class. The speech-recognition application takes 

the user’s voice command, tries to match the input to one of the active rules and provides 

an array of results and their tags. Then, the best result’s tag is sent to a client application 

through the network. The reason for sending tags instead of results is that a tag may 

represent multiple results, which flag the same task and consequently makes handling the 

incoming packet content on the client side easier. 

The recognition application also has a synthesizer object that greets the user when 

the application is initiated. Additionally, this object provides feedback to the user when 

the recognition engine cannot match the voice input to one of the active grammar rules, 

that is, when the result is rejected. 
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             Welcome Phase Commands 

 

 
 

Initiate Actors 
 

Initiate Humanoid Animation 
 

Initiate Avatars 
 

Open Actors 
 

Open Humanoid Animation 
 

Open Avatars 
 

Start Actors 
 

Start Humanoid Animation 
 

Start Avatars 

 
  
  
  

 
Table 5.1   Recognized Voice Commands during We
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Animation Phase Commands 

Nancy 
Allen 
Box Man 
Switch To Nancy 
Switch To Allen 
Switch To Box Man 
Display Nancy 
Display Allen 
Display Box Man 
Turn Into Nancy 
Turn Into Allen 
Turn Into Box Man 
Jump  
Run 
Walk  
Kneel 
Stand 
Why Don’t You Jump 
Why Don’t You Run 
Why Don’t You Walk 
Why Don’t You Kneel 
Why Don’t You Stand 
Could You Jump 
Could You Run 
Could You Walk 
Could You Kneel 
Could You Stand 
Please Jump 
Please Run 
Please Walk 
Please Kneel 
Please Stand 
Good bye 
So long 
lcome Phase and Animation Phase 



4. Networking 

Creating a networked application is also one of the primary goals of this thesis. 

The DIS-Java-VRML package implements and simplifies VRML-Java communication, 

as previously discussed in this chapter. 

User Datagram Protocol / Internet Protocol (UDP/IP) is used as the network 

protocol. UDP provides a connectionless transmission and best-effort delivery. With 

UDP/ IP, an application can direct a packet to be sent to one other application endpoint. 

Although UDP/IP is not as reliable as Transmission Control Protocol (TCP), it removes 

most of the overhead introduced by TCP [Zyda 99].  

The designed networking system consists of one server and two client 

applications. The server application (SpeechRecognizer) sends DatagramPackets to the 

network. In this implementation, a DatagramPacket includes a destination and a matched 

rule tag, which is the result of the recognition process. With the first client application 

(InvocationClient), to open the browser, to load the VRML scene and to quit the client 

side applications are aimed. The server application sends the rule tags, related with the 

initiation of the scene, to the first client. Then, this client application invokes the browser 

by creating it as a Process object. Besides, the invoked browser loads the VRML scene. 

Once the browser loads the VRML file, the OrderExecutor class is executed through the 

Script node. The OrderExecutor class starts the second client (ClientNetListener) as a 

thread. This time, the server sends DatagramPackets to the second client. The second 

client passes the incoming packet content to the OrderExecutor class. According to the 

packet content, the OrderExecutor class affects the relevant VRML nodes for demanded 

animation (refer to VRML-Java communication). Figure 5.7 demonstrates a flowchart of 

this networking process. 
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Figure 5.8   Networked, Voice-Enabled Humanoid Animation System Structure 

 

5. Providing Available Commands and Feedback 

The user should know what to say to the application. If the number of the 

available commands is excessive, displaying them becomes a must. Hence, some GUI 

components showing the available commands are employed. A message that indicates 

what is said (recognized command) and a volume-level indicator are also added to these 

GUI components for feedback purposes. The Voice Panel automatically adjusts its size 

according to the screen resolution once it is initiated. Figure 5.9 demonstrates Voice 

Panel and Figure 5.10 shows a screen shot of the Voice Activated Interchangeable 

Actors. 
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Recognized Command
Volume Level Indicator 

Available Commands 

 
Figure 5.9   Voice Panel Showing Animation Phase Commands 

68 



 
 

Figure 5.10  Screen Shot of Voice-Activated Interchangeable Actors (Nancy and Walk 
selected) 

 

 

E. ASSESSMENT OF THE FINAL PRODUCT 

The features of the final product can be summarized as  

• Hybrid: It involves both VUI and GUI components. 

• Networked (UDP/IP): A user may command and control the client 

applications in a remote host. 

• User-Independent: The speech recognizer application does not require any 

training to understand the user’s speech patterns. 

• Mono-Lingual: It understands only English commands. 
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• Multi-Platform: Since only Java and VRML are used in implementing, the 

final product may run on various platforms and operating systems. 



Different users experienced the final product. Two of the experiences will only be 

discussed because they are extreme examples of the varied performances. The first one 

took place in front of an audience in the final academic presentation of this thesis. The 

audience was well informed about the factors affecting the accuracy (specifically noise) 

by the presenter. A person from the audience was called for the demo. Before the 

presentation, the participant was given some important tips, such as “no shouting, speak 

naturally, no need to speak discretely,” etc. The participant followed the tips and 100% 

accuracy was observed. In another experience, a participant, who had no background 

with speech-recognition applications and had an atypical voice, tested the application. 

The participant was speaking discretely and loud. Moreover, the audience in the 

background was talking continuously. As a result, 20% accuracy, which is very low, was 

observed. These two examples present how important the user’s training is, and how 

noise affects the accuracy. 

IBM ViaVoice SDK supports French, German, Italian, Spanish, UK English, and 

US English. Therefore, the final product is promising for limited internationalization 

(I18N). However, the current implementation, grammar, and user interfaces must be 

modified when integrating this capability. I18N testing is a promising area for future 

work. 

 

F. SUMMARY 
This chapter discussed the design issues, implementation details, development 

process and provided an assessment of the final product. 
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VI. CONCLUSION AND FUTURE WORK 

A. THESIS CONCLUSIONS 

1. Integration of Speech-Recognition Technology to the Networked 
Virtual Environments (Net-VEs) 

As computation power increases, integrating the speech-recognition technology to 

the Networked Virtual Environments (Net-VEs) is possible. This thesis demonstrates a 

way of realizing this objective. Improvements in speech-recognition technology to build 

more robust speech-recognition applications will expedite this integration. 

 

2. Hybrid Interfaces (VUI + GUI) 
The applications incorporating VUIs and GUIs in an appropriate way can be very 

powerful. While a VUI provided access to the application, the GUI components obtained 

feedback and displayed available commands for the user in this thesis. Hybrid interfaces 

may also augment the speed to access an application. For example, when using an 

application in a hybrid interfaced operating system, a user might need to open another 

application. In this case, the user orders the operating system to do it with his or her 

voice. This capability eliminates the overhead introduced by the GUI-dependent 

operating systems, such as minimizing the window, finding the application shortcut and 

starting it, etc. 

 

3. Interchangeable Humanoids and Animation Behaviors 
Humanoids and animations can be authored independently. Choosing humanoids, 

which have identical skeleton structures, reduces the complexity in creating 

interchangeable humanoids and animation behaviors. Reusable animation behaviors can 

be created, prototyped and applied to various humanoids, which are built according to 

standard specifications. When dealing with interchangeability of the humanoids and 

behaviors, the efficiency of the implementation becomes very important. Building 

archived libraries of humans and behaviors will become increasingly valuable.   
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B. RECOMMENDATIONS FOR FUTURE WORK 

1. Building Simulation of a Scenario or a Game 
The next step in this research is to build a simulation or a game, which takes 

advantage of VUIs. Besides accessing the application with voice, avatars that can fulfill 

voice commands may also be inserted to the simulation or the game. Then the available 

entities in the simulation or game can be directed by the voice of the user. The 

programmer must carefully design commands available to the user by considering the 

usability of the application.  

 

2. Improving Networking 

According to the chosen scenario or game, present networking implementation 

may be changed and improved. UDP/IP, used as the network protocol in this project, 

offers no reliability or ordering guarantees. In the scope of a simulation or a game to be 

implemented, a more reliable protocol, which offers a customized packet, can be used.  

 

3. Expanding the Motion Library 
This thesis included building a reusable motion library. This library consists of 

limited number of behaviors. Therefore, the motion library can be easily expanded with 

motion tracking systems. Using motion-tracking systems to obtain new animation data 

also contributes to the realism of the behavior.  

 

4. Composition of Animation Behaviors 
The user might want to combine two available animation behaviors. For example, 

he or she might say  “Run and Jump.” Current application does not handle this situation. 

This issue can be addressed in the following ways by: 

• Designing a hierarchical structure for animation behaviors so that the 

behavior with a higher precedence is preferred on top of the behavior, with a 

lower precedence.  

•  Creating a hybrid behavior that includes the characteristics of both 

behaviors.  
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5. Agents 

Agents are like software nano-robots. They give designers the ability to solve 

problems indirectly, from inside the virtual representation of the problem. They also give 

the problem solver a low-level, detail rich view of the problem or model. Agents adapt, 

learn and take action based on local information at the lowest level of the problem or 

model [Hiles 2001]. Agents and speech-recognition technologies can be used together to 

emulate human behavior and to provide intelligent virtual characters in Virtual 

Environments (VEs).  

 

6. Support for Tactical Applications 
Speech-recognition technology can improve team communication in diverse and 

hazardous environments. Noise-cancellation headsets can lead to protection of operators 

in life-threatening situations. Augmented reality (AR) can provide a great deal of 

operational support information to team members when aural or visual perception is weak 

or impossible. Moreover, body-tracking systems can send the position, orientation and 

behavior information of team members in a hazardous area to a central visualization 

system to be reviewed by the experts in real time. Visual display of this information 

bundle can provide a great deal of support in making critical decisions and save lives.  
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APPENDIX A – ACRONYMS 

API           Application Programming Interface 

AR       Augmented Reality 

DAG         Directed Acyclic Graph 

DARPA    Defense Advanced Research Project Agency 

DOD        Department of  Defence 

DTD   Document Type Definition 

EXTERNPROTOs   External Prototypes 

FBCB2  Force XXI Battle Command, Brigade and Below 

GUIs   Graphical User Interfaces 

H-Anim  Humanoid Animation 

IP   Internet Protocol 

ISO   International Standards Organization 

I18N   Internationalization 

JSAPI   Java Speech API 

JSGF   Java Speech Grammar Format 

Net-VEs  Networked Virtual Environments 

NLP   Natural Language Processing 

NPS   Naval Postgraduate School 

PDAs   Personal Digital Assistants 

PROTOs  Prototypes 

SALT   Size, Activity, Location, Time 

SUR   Speech Understanding Research 
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TCP   Transmission Control Protocol 



TTS   Text-to-Speech 

UDP   User Datagram Protocol 

URLs   Uniformed Resource Locators 

VEs   Virtual Environments 

VRML  Virtual Reality Modeling Language 

VUIs   Voice User Interfaces 

X3D   Extensible 3D 
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APPENDIX B – 3D SCENES AND ANIMATION BEHAVIORS 

All 3D scenes and animation behaviors are included in the Source Code CD. The 

source code files and directories in the Source Code CD are 

– ClientNetListener.java, .class 

– Invocation Client.java, .class 

– OrderExecutor.java, .class 

– Speech Recognizer.java, .class 

– VoicePanel.java, .class 

– Rule.txt 

– Readme.html 

– Under X3D directory; 

VoiceActivatedInterchangeableActors.x3d 

LOA1_JumpAnimation.x3d 

LOA1_KneelAnimation.x3d 

LOA1_RunAnimation.x3d 

LOA1_StandAnimation.x3d 

LOA1_WalkAnimation.x3d 

– Under VRML directory 

VoiceActivatedInterchangeableActors.wrl 

LOA1_JumpAnimation.wrl 

LOA1_KneelAnimation.wrl 

LOA1_RunAnimation.wrl 

LOA1_StandAnimation.wrl 

LOA1_WalkAnimation.wrl 
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– slides directory 

– centers directory 

– javadoc directory 

– lib directory 
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